OVERVIEW: Your objective in this assignment should be to understand

- 1. ...the development of the plant body from the embryo and subsequent <u>terminal</u> and <u>lateral meristems</u> (*i.e.* groups of cells which behave like "stem cells" so much in the news these days).
- 2. ...the role of three <u>primary meristems</u> (*(i,e. protoderm, procambium, and ground meristem* which arise from the terminal meristems and which are responsible for the development of *dermal, vascular tissue* and *ground tissue*.
- **PROCEDURE:** We have already studied most of Chapter 4, but have not included the beginning section entitled "Meristematic Tissues." Please read these two pages. Then, use Chapter 5, pp 65-68 and Chapter 6, pages 86-89 for additional support. The STUDY OUTLINE ties these concepts together to provide a logical flow of the concept of meristems and plant growth.
- **THEMES:** Plant meristems are responsible for producing healthy, new cells which differentiate in an orderly manner to establish regions of dermal, ground, and vascular tissue in the growing plant body.

LECTURE DISCUSSION QUESTIONS:

- 1. What is the relationship between the primary meristems and the tissues such as dermal, vascular, and ground tissue during plant development?
- 2. Consult your study of the *Capsella* embryo from Laboratory Ex. #10, along with Figure 6.2, (Chapter 6) to explain the development of the plant stem axis following seed germination.
- 3. What is *growth*? How would you distinguish growth from *development*?

STUDY OUTLINE: MERISTEMS and PLANT GROWTH

- I. INTRODUCTION -- How do plant cells organize into a multicellular plant body?
 - A. PLANTS ARE COMPOSED OF MANY DIFFERENT <u>TISSUES</u> See SA #27
 - B. TISSUES, IN TURN, FORM THE ORGANIZATION OF ORGANS
 - 1. Three plant organs leaf, stem, root
 - 2. Each organ has three *tissue regions* dermal, vascular, ground tissue

II. VASCULAR PLANT DEVELOPMENT

- A. Zygote Mitosis + Cytokinesis + Differentiaton Embryo
- B. SEED = embryo + food reserve [cotyledon or endosperm]
 - 1. LEAF PRIMORDIA already in seed
 - 2. MERISTEMS = region where undifferentiated cells divide

- III. MERISTEMS -- areas where plant growth is possible -i.e. like "stem cells" in animals
 - A. PLANT versus ANIMAL
 - 1. Animal: Determinant growth -- short period of embryonic growth during which all body parts are formed henceforth, increase in <u>size</u> only
 - 2. Plant: Indeterminant growth -- meristems, continually embryonic cells, remain active throughout life produce additional organs (*e.g.* leaves, flowers)
 - B. FUNCTIONS OF MERISTEMS
 - 1. Primary meristems establish growth patterns for tissues and organs
 - 2. Produce genetically healthy cells

IV. TYPES OF MERISTEMS

- A. APICAL MERISTEMS -- two types: root apical and shoot apical (tip) meristem
- B. LATERAL MERISTEMS -- produce secondary growth (girth)
- C. INTERCALARY MERISTEMS -- growth between mature tissues (e.g. grasses)
- D. PRIMARY MERISTEMS -- meristems derived from apical meristems; produce primary (Iº) growth
 - by which plant stems and roots increase in length (elongation)
 - 1. PROTODERM
 - a. Formed from *anticlinal division* of surface apical cells
 - b. In turn, develops into epidermis
 - 2. PROCAMBIUM -- develops into vascular tissue
 - 3. GROUND MERISTEM -- develops into core tissues (cortex and pith)
- V. APICAL MERISTEMS or "From where do new cells originate in a growing plant?"
 - A. SHOOT APICAL MERISTEM e.g. Coleus (x-section) Figure 6.2, Ch. 6.
 - 1. TUNICA -- outermost layer or two; divides anticlinally to --> protoderm
 - 2. CORPUS -- inner layers; divide in all planes; consist of:
 - a. Peripheral Meristem along with protoderm and procambium, produces leaf primordia
 - b. Pith-rib meristem -- produces vertical <u>files</u> of pith cells -> expand internodes]
 - c. Central Mother Cells -- supplies cells to peripheral and rib-meristems
 - B. ROOT APICAL MERISTEM
 - 1. Divides to produce *root cap* as protection
 - 2. Produces all root tissues toward shoot of plant
 - 3. Quiescent center -- inner core of non-dividing cells; rebuilds damaged meristem
- VI. LATERAL MERISTEMS or "What keeps woody plants from "bursting their bark?"
 - A. Vascular cambium -- originates from latent procambium; produces both II^o xylem and II^o phloem
 - B. Phellogen -- produces periderm, the outer bark consisting of phellem (cork) and phelloderm

GROWTH = an irreversible increase in size of an organism resulting from

1. Cell division -- more cells 2. Cell enlargement -- cell wall loosening and stretching via turgor