| SA #31-32 | MOVEMENT OF WATER IN PLANTS - "SPAC"        |  |  |
|-----------|---------------------------------------------|--|--|
| BIO 2500  | Chapter 5 (p.65-82), Chapter 9 (p. 155-160) |  |  |

**OVERVIEW:** We have applied kinetic theory to an understanding of the behavior of water through the concept of *water potential*. The water potential concept is valuable because it can be applied to water within <u>soil</u>, within the <u>plant</u>, and within the <u>atmosphere</u> – that is, within the *Soil-Plant-Air Continuum* (SPAC). In this assignment, we will consider the SPAC and how water and solutes (*e.g.* nutrient ions) are absorbed by roots.

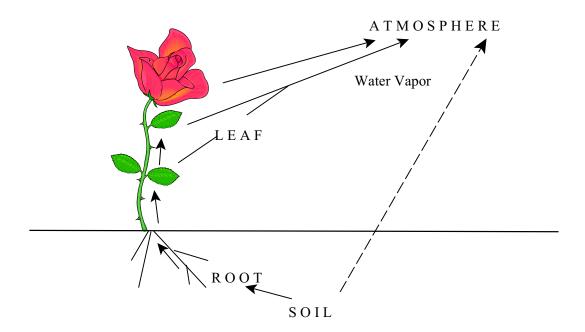
**Note:** Physiology of plant water relationships is not fully understood, and new research continues. The scope of BIO 2500 requires that we consider only a basic overview of these processes while recognizing that we risk oversimplification. You may choose to pursue a more thorough study by enrolling in BIO 3510 Plant Physiology.

READING: As noted in the title box above, this assignment has two parts:
1) Water absorption and passage through roots – Ch. 5, p. 65-70 [Emphasis will be upon "mature root," pp 67-70. Lab Manual, Ex. #12 – labeled Fig. 12-1 and 12-2 and lab notes
2) Control of Transpiration – Ch. 9, p. 155-158. and Lab Ex. #14 on Leaves as well as prior graphics and notes on xylem anatomy. Time permitting we will consider Phloem Transport, pp. 159-160.

**PROCEDURE:** Read and study the above pages and review your laboratory work on roots, stems, and leaves. Then, read the **STUDY OUTLINE** which highlights the major concepts. Finally, test your comprehension by completing parts of the outline that require input and answers.

# STUDY OUTLINE – "The 'SPAC;" -- Water Absorption by Roots and Control of Transpiration

Water moves from *soil* to *root epidermis* and across the root to the central vascular cylinder, or *stele* where it enters the *xylem* and is transported upward to the stem and toward the leaves where eventually water diffuses into the atmosphere. Page 31.2 of this Guide provides a model of the SPAC and lists water potential values measured along the "SPAC."


QUESTIONS: Consult Chapter 5 and your laboratory study of root anatomy to complete the following:

1. List the specific <u>root</u> tissues water would pass through on its "journey" from the soil to root xylem.

Soil ->

 $\rightarrow$  xylem

- 2. Based upon the data in the SPAC Model (next page), what must be true of Ψw values in order for water to move from soil to root xylem? \_\_\_\_\_\_
- 3. As the soil becomes drier between rains, soil  $\Psi$ w (check one) \_\_\_\_\_ Increases \_\_\_\_\_ Decreases.
- 4. Assuming the  $\Psi$ w of the root hairs remains at -2 atmospheres, water uptake would cease when the soil  $\Psi$ w reaches atmospheres. Explain.
- 5. Water entering root hair cytoplasm can diffuse across the root (see 1. above) from cell to cell without crossing the plasma membrane again because of the existence of
- 6. Some water also can diffuse across the cortex via the interconnected cell walls, but it cannot cross the endodermis in this way because of the <u>strips</u> composed of \_\_\_\_\_.
- 7. The plasma membrane thus divides the root into two interconnecting compartments known as the *symplast* (interconnected cytoplasm) and the *apoplast* (extracellular, or cell wall, space).
- 8. How is the endodermis like a "check point" to control the ionic content of water entering the stele?



Soil - Plant - Air Continuum

PLANT RECEIVES WATER FROM SOIL AS LONG AS:

| $\Psi_{\rm W}$                      | $> \Psi_{W}$ | > Ψ <u></u>  | $_{W}$ > $\Psi_{W}$ | $> \Psi_{W}$ |
|-------------------------------------|--------------|--------------|---------------------|--------------|
| SOIL                                | ROOT HA      | AIRS ROOT XY | LEM MESOPHY         | AIR          |
| EXAMPLE DATA: $\Psi_{\rm W}$ = -0.5 | - 2          | - 5          | - 15                | - 1000 atm   |

FACTORS:

FIELD CAPACITY

**ROOT SURFACE** 

COHESION-TENSION VESSEL-TRACHEID DIAMETER

> CUTICLE, STOMATAL RESISTANCE LEAF MORPHOLOGY

HUMIDITY

## I. MOVEMENT OF WATER AND MINERALS IN THE XYLEM

- A. PROBLEM: Water is continually being lost from plant leaves and stems as *water vapor* by the process of *transpiration*. Water must be absorbed from the soil and transported to plant shoots to replace what is lost.
- B. TRANSPIRATION RATE: Give one or two estimates of transpiration rates from Stern, et al.:
- C. PATH of WATER Suggest an experiment to verify that water is transported in a tree from

the roots to shoots via the *xylem*, not phloem.

- D. MECHANISM Note how each of the following fail to account for the ascent of water:
  - 1. Capillarity Hypothesis water rises only about 1 m in xylem by capillarity; air bubbles inhibit
  - 2. Suction Hypothesis (Atmospheric Pressure pushes water up) accounts for 34-ft maximum
  - 3. Pumping Cell Hypothesis requires living cells; vessels and tracheids function after death
  - 4. Root Pressure Hypothesis roots act like an osmometer; water rises by osmotic pressure
    - a. What causes *root pressure*?

b. What is *guttation*?

When is it observed? Why?

- 5. Cohesion-Tension Theory (Transpiration-Cohesion) most excepted hypothesis; next section
- E. According to the "Cohesion-Tension Hypothesis", explain the role of each of the following:
  - 1. Solar-powered *transpiration*:
  - 2. Ww gradients in mesophyll:
  - 3. Leaf vein endings in mesophyll:
  - 4.  $\Psi$ w gradient down stem to roots: \_\_\_\_\_
- F. SUPPORTING EVIDENCE -- water is under tension  $(-\Psi p)$  within xylem; varies with time of day

## **II. STOMATAL CONTROL OF TRANSPIRATION**

A. FACTORS AFFECTING TRANSPIRATION RATE - List three environmental factors involved:

| <b>Environmental Factor</b> | Explanation of Effect on Plant |
|-----------------------------|--------------------------------|
| 1.                          |                                |
| 2.                          |                                |
| 3.                          |                                |

Note: Try to relate this study exercise to the leaf morphological adaptations encountered in lab.

#### B. STOMATAL STRUCTURE

- 1. Based upon your lab study of *guard cells* and *stoma* of *Tradescantia* or *Sedum*, what composes the *stomatal apparatus*?
- 2. The range of densities of stomata in most species is between 1,000 and 100,000 stomata/cm<sup>2</sup>
- 3. According to Stern, of the total transpiration, what percentage is lost through cuticle?  $\sim ____%$
- 4. How do *turgor* and *cell wall microfibrils* combine to make guard cells "bow apart?"

C. STOMATAL PHYSIOLOGY -- Explain the *cause-effect* relationship among each of the following:

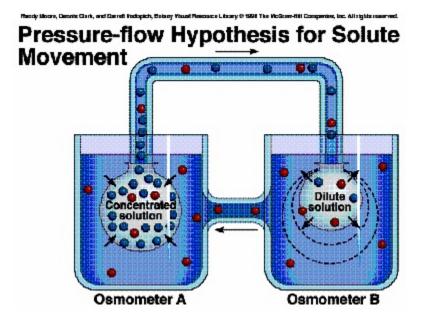
- 1. Light (the *cause*) and  $CO_2$  concentration, or  $[CO_2]$ , <u>inside</u> leaf: (the *effect*)\_\_\_\_\_
- 2.  $[CO_2]$  and guard cell membrane H<sup>+</sup>/K<sup>+</sup> ATPase:
- 3.  $[K^+]$  and  $\Psi w$  inside guard cells:
- 4. Guard cell  $\Psi$ w and osmosis:
- Osmosis and \U00c0p p within guard cell \_\_\_\_\_\_\_
   Summary:

# D. PROTECTION AGAINST DESICCATION:

- 1. Explain how stomates close when transpiration exceeds water supply from xylem.
- 2. The stomatal apparatus must have *receptors* that can detect environmental *stimuli* related to opening and closing. List <u>three</u> environmental *stimuli* noted or implied in the stomatal

mechanisms above:

- IV. PHLOEM TRANSLOCATION [May be abbreviated or omitted depending on time available.]
  - A. PHLOEM ANATOMY
    - 1. How do sugars, etc. move through from one *sieve cell* to another?
    - 2. Cite one source of evidence that phloem contents are under a positive pressure  $(+\Psi p)$
    - 3. What prevents plants from "bleeding" sugary sap when cut?


B. PHLOEM PHYSIOLOGY -- What drives the movement of organic substances?

- 1. In your own words, state the *pressure-flow hypothesis*:
- 2. Explain how a physical model (p. 30.6 and Fig. 9.17 in Stern) supports the pressure-flow hypothesis.
- 3. nswer the following with respect to a growing watermelon plant with melons developing:
  - a. What portion(s) of the plant are source? \_\_\_\_\_ Explain \_\_\_\_\_

b. What portions of the plant are sinks?

Explain \_\_\_\_\_

- 4. NOTE: We will not study *phloem loading* in detail although you should be aware that phloem translocation is an *energy-requiring* process because membrane ATPase activity is responsible for pumping sugars, etc. into sieve cells in source leaves.
- 5. <u>Application Question</u>: How would removal of a 30-cm wide band of tree bark cause death of the tree? Describe the primary and secondary affects of this "invasive surgery."



# SUMMARY REVIEW EXERCISE Complete the Table Comparing Three Mechanisms of Transport in Plants

|                                                                   | Transpiration                                                            | Guttation                                                                                | Phloem Transport                                                                                      |
|-------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Plant Tissues Involved                                            | Xylem                                                                    |                                                                                          |                                                                                                       |
| Visible Manifestation<br>or Experimental<br>Verification          | Humidity increases in<br>atmosphere around an<br>enclosed plant in light |                                                                                          | C-14 labeled assimilates<br>are translocated to sinks<br>from source leaves<br>exposed to $^{14}CO_2$ |
| Necessary Environmental<br>Conditions                             | Sunny conditions with high soil $\Psi$ w and low atmospheric humidity    |                                                                                          | Sunny conditions with<br>high soil $\Psi$ w, thus<br>favoring photosynthesis                          |
| Driving Force                                                     |                                                                          | Active transport and<br>accumulation of solutes<br>within the root xylem in<br>the stele |                                                                                                       |
| Magnitude and (+ or -)<br>of $\Psi$ p within Conductive<br>Tissue |                                                                          | $+ \Psi_{p}$                                                                             |                                                                                                       |
| Other Notes:                                                      |                                                                          |                                                                                          |                                                                                                       |