I. INTRODUCTION -- factors at work to consign snowflakes to constant change

QUOTE: Snowflakes, for all their elaborate detail, are destined for destruction almost from the time they form. -- Marchand

A. ENERGY SOURCES ARE FROM: Beneath (soil), Above (sun, rain, fog) and include

> latent heats of <u>fusion</u> (335 joules/g H₂O) and <u>condensation</u> (2450 J/g)

B. LOW THERMAL CONDUCTIVITY (k) of snow slows distribution of energy which causes...

...GRADIENTS in ENERGY which ---> GRADIENT OF WATER VAPOR

II. SNOW METAMORPHISM

- A. DESTRUCTIVE METAMORPHISM -- OR--: "Why does snow 'hang' over roof eves?"
 - 1. PROCESS: Shortening of arms of snowflake crystals due to redistribution of water molecules
 - 2. CHARACTERISTICS: spontaneous, inevitable, faster in warm air "equi-temperature" conditions; no T gradient in snow required
 - 3. Shortens arms of crystals --> more spherical shape, increased stability
 - 4. **RESULTS:** Indicate from your study whether the following INCREASE or DECREASE
 - a. Snow density ______ and air space/volume ______
 - b. Mechanical strength of snow _____ -- snow 'hangs' over roofs, railings
 - c. APPLICATIONS: Snow shelters -- Inuits igloo, and Athapaskan style Quin-zhee
- B. CONSTRUCTIVE METAMORPHISM -- OR-- "Why does snow 'hollow out' beneath"?
 - 1. FACTORS -- temperature gradient (warmer soil to top of snowpack), and pore spaces
 - 2. PROCESSES -- conduction of heat from soil --> sublimation -> vapor gradient
 - > greater [H₂O potential; and conc.] bottom to top
 - 3. RESULTS
 - a. Upward conduction of H_2O vapor --> diminishes crystals on bottom
 - b. Recrystalization on upper layers of snowpack
 - c. "Depth Hoar" -- brittle, loosely arranged crystals on bottom
 - d. Increased space in subnivean environment for small mammal movement
 - e. Increased danger of cave-ins and avalanches

C. MELT METAMORPHISM -- OR-- "What happens when any part of snowpack is exposed to above-freezing temperatures"?

OR-- "Why do we see more melting than one would expect, especially when fog forms over snow *versus* when it rains"?

1. FACTORS

- a. Snow melt at surface --> heat gain of 335 J/g to become liquid
- b. Downward infilt. of energy-carrying liquid and recrystalization releases 335 J/g
- c. Heat Pump effect -- transport of energy decreases temp. gradient
- 2. QUESTION: Why does formation of FOG over snow cause faster melting than if it is

raining?

> HINT: Compare Latent Heat of Condensation _____ Joules/g H_2O with Latent Heat of Crystallization Joules/g H_2O

III. INSULATIVE VALUE

- A. QUESTION: How much snow depth is enough to insulate life beneath?
 - 1. Depends upon degree of metamorphism (which increases density)
 - 2. Fresh snow (with lowest density) has higher THERMAL INDEX
 - 3. EXAMPLE: 20 cm of fresh snow with density of $0.1g/cm^3 \rightarrow I_T = 200$ [i.e. $I_T = z$ (or thickness in cm) $\div G(g/cm^3)$] = [20 cm $\div 0.1g/cm = 200$ cm x cm³/g]
 - 4. CONCLUDE: 20-cm snowfall is enough to reach the threshold where mammals are protected from air temp. fluct. (see Fig. 5); but metamorphism will cause drop below minimum
 - 5. BENEFIT TO SMALL MAMMALS -- See Figure 6

IV. SNOW AND RADIENT ENERGY FLOW -- OR-- "Why might snow melt first around a tree trunk, but last in a small forest clearing"?

- A. Snow is natures best "_____"
 - 1. Excellent <u>reflector</u> of shortwave -- brightness of snow!
 - 2. Excellent <u>absorber</u> of IR (heat) from radiating objects, and excellent radiator of IR

B. RESULTS:

- 1. Tree trunk radiation of IR to snow --> sublimation
- 2. Snow also is radiating IR and reflecting light to trunk
- 3. Snow has NET LOSS of energy on CLEAR NIGHT
- 4. Coldest air layer is near snowpack --> temp. inversion (Fig 8)
- 5. Last snow to melt is in forest clearings --> low insolation but high IR radiation out
- 6. "Ice Fog" -- forms when water vapor condenses/freezes in inversion layer

V. LIGHT TRANSMISSION IN SNOWPACK

- A. Increases with increasing density as <u>destructive</u> metamorphism rounds crystals and increases surface area for refraction and scattering
- B. However, this increase (Figs. 12 and 13) is reversed as coalescence decreases surface area and hence scattering
- C. Therefore, increased insolation in Jan->Apr is offset some by decreased transmission due to increasing density
- D. Blue light (500 nm) has best penetration into snow (Fig 15)
- E. Many questions remain about effects of light on subnivean plants and animals