..... CELL PHYSIOLOGY OF COLD TEMPERATURE SURVIVAL BIO 3610 #16 Reading: Marchand pages 41-56

- I. WHEN PLANT TISSUES FREEZE -- WHAT HAPPENS ?
 - A. EXPERIMENTAL SETUP What is the role and placement of the following?
 - 1. PLANT TISSUE SAMPLE See Marchand, Appendix B
 - 2. THERMOCOUPLE See Marchand, Appendix A
 - 3. REFRIGERATED WATER BATH, or DRY ICE
 - B. COOLING CURVE -- Figure 16
 - 1. SUPERCOOLING –

Water rarely freezes as temperature reaches 0°C:

Rather _____

- 2. Effect of additives to water:
 - a. Solutes (colligative property)
 - b. Ice-nucleators form "centers" around which crystals can grow
- 3. FLASH FREEZING rapid, widespread crystallization throughout tissue
 - a. Causes measureable release of heat seen as an _____
 - b. Source of the thermal energy is _____

C. CELLULAR EVENTS -- Figure 18

- 1. Extracellular water freezes first Why?
 - > Causes <u>first exotherm</u> (Fig. 16)
- 2. Result of extracellular freezing? [Explain with respect to Ψw gradients.]
 - a. Cytoplasmic solute conc.
 - b. Result: Prevention of <u>intra</u>cellular freezing which is usually fatal

- 3. Free Energy is less at surface of ice crystal:
 - a. Less kinetic and vibrational energy
 - b. Resultant $\Psi_w\,$ gradient drives osmosis across membrane to the extracellular ice crystals
- 4. Result: Frost Plasmolysis -> delay or prevention of _____

Conclude: Extracellular ice is GOOD!

D. SUMMARIZE: Can you explain the events of plant cell freezing with respect to the following concepts?

Supercooling	Exotherm	Osmosis	Solutes
Flash freezing	Vibrational energy	$\Psi { m w}$ gradient	

E. CELL DEATH – consequence of intracellular freezing

1. Escaping death means –

Membranes must be permeable to allow "free water" to escape

>> RESULT: Tissue may survive -20 to -30 C w/o dying (Fig 16)

2. SIGN OF DEATH -- second exotherm -- Fig. 16

This apparently suggests freezing of _____

- 3. Two theories to explain cause of CELL DEATH:
 - a. Membrane integrity lost -- prevents some water from exosmosis -- RESULT: frozen inside
 - b. "Vital water" hypothesis (Weiser) -- death when "bound water" freezes
 -- denaturation of enzymes/memb. ptn.
 -- here, less focus on membranes

F. CHALLENGE OF PLANT CELLS

- 1. AVOID _____
- 2. MOST CHALLENGING CONDITIONS --
- 3. Exception: "Glass Formation" [amorphous (no reorient. of H₂O to crystal) solidification]

e.g. Populus balsamifera showed solidification of intracell. fluid after slow cool to -28C

II ACCLIMATION TO RESIST FREEZING:

	Α.	Acclimation – process in which									
	В.	B. EXPERIMENT collect twig samples from July to December									
		<u>threshold temperature</u> for survival becomes lower <i>e.g.</i> light frost in early fall may be devastating									
	C.	C. PHASE I – of acclimation induced by the following two ENVIRONMENTAL ST									
		1.									
		2.									
		MECHANISM: Environmental cue> photoreceptor> hormone> physiological effect									
		LONGER P_{fr} ABA synthesis a) bud dormancy NIGHTS \rightarrow in leaves \rightarrow b) leaf abscission c) membrane permeability									
		NOTE: Dormancy is an active process (<i>e.g.</i> requires availability of sugars, <i>etc</i>									
	D. PHASE II CHANGES> induced by occurrence of freezing temperatures								es		
		1.	Increa	ased lipio	d unsatura	ation			ased membrane pern ase crystallization pc		
	2. Changes in sugars and protein configurations										
			a. S	Sugars a	nd proline	-compatible	e solute	es tha	at protect proteins fro	om denaturation	
			b. S	Sugars/o	rganic aci	ds may coun	iteract a	agair	nst dehydration (see	1.)	
	E.	FREEZE TOLERANCE AND GEOGRAPHIC RANGE									
		1. <u>Low temperature threshold</u> of tolerance corresponds to average minimum temp of location of northern limit of the species range								nimum temp.	
		2.	SUG	GESTS t	emperatu	re is KEY fa	ctor in I	limitii	ng distribution		
		3.	STU	DY Table	s 2, 3, 4						
III.	AN	NIMAL CELL RESPONSE TO SUBZERO see Marchand, pp 125-141 [Assignment]									
	A.	MO	ST IN	SECTS	ARE		<u>A</u>	ND _		like plants	
		> INSECTS often overwinter in association with plants leaves, stems, litter									
	R	B. INSECTS ACCLIMATIZE under similar stimuli as those causing plants to acclim									
	ט.										

C. NOTE: Acclimatization is <u>active</u> process in insects, too; involves biochemical changes